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ABSTRACT Rip currents are like rivers of fast-moving water that can quickly carry the unwary out to sea.
They are not easy to recognize, especially to the untrained observer. Other than in-situ current measurements,
there exists a number of methods that analyzes images and videos to detect rip currents. Most of these
techniques base their detection on the appearance of rip currents such as foamy pattern, discoloration of
water, and locations of breaking waves. Leading methods use either image processing or machine learning
of images and/or video input. In this paper, we analyze the behavior of water movement rather than simply its
appearance to detect rip currents. Specifically, we investigated several flow visualization methods and tune
them to detect rip currents. Based on our study, we recommend two methods that allowed us to detect rip
currents where other methods have failed. And because the methods originated as visualization techniques,
any presence of rip currents are automatically highlighted. We also evaluated these two methods against
previously annotated results by rip current experts, and found that our detections were sufficiently sensitive
that some expert annotations were relabeled.

INDEX TERMS Feature detection, flow visualization, marine safety, time varying vector field, video
analysis.

I. INTRODUCTION
Rip currents are dangerous and can be deadly. Themajority of
the population does not know how to identify them. Detecting
rip currents in webcam video can inform users of potential
hazards in near real-time and be utilized to support ongoing
efforts at rip current prediction. Previously proposed methods
detect some types of rip currents but not others. While image
processing and machine learning methods perform well on
specific types of rip currents, they are not applicable in
all scenarios. This paper proposes and investigates a more
general approach based on flow analysis and adapting flow
visualization methods to detect rip currents.

Beaches around populated urban areas attract many beach
goers and other recreational users. However, the beach can
pose a grave danger to the unwary public in the form of
rip currents [1]. People who unknowingly enter a rip current
may be carried out to the sea if the current is strong enough.
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Globally there are thousands of drownings each year due to
rip currents [2], [3]. It is estimated that around 82% of rescues
on the beaches in the United States are due to rip currents [4].
Year-to-year statistics collected by the U.S. National Oceanic
and Atmospheric Administration (NOAA) [5] indicate that
there has been no significant decline in the number of drown-
ing fatalities due to rip currents [6] despite the proliferation
of signage, videos and other public safety messaging warning
of the potential dangers rip currents pose.

Even people with some knowledge about beach safety
can have difficulty in properly identifying rip currents. In a
2008 study, researchers found that almost 80% of surveyed
Australian beach goers were aware of common rip safety
advice such as ‘‘swim parallel to the beach.’’ However, only
40% could identify a rip current when shown a picture
of one, even though 80% thought they could [7]. In fact,
even professional lifeguards cannot always accurately iden-
tify the presence of rip currents [4]. The reality is that rip
currents are often not readily or easily identifiable to the
average beach goer [8]. Furthermore, the most vulnerable
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FIGURE 1. Examples of two recommended visualization methods for detecting rip currents. The filtered arrow glyph method highlights rip
current and potential feeder current with arrows, and the timelines method deforms in the presence of a rip current. In Scenario 1, the
original video contains green dye as a visual aid to the rip current present in the middle of the screen. The dye does not impact resulting
visualizations. In (a) the filtered arrow glyph highlights the body of the rip in red and the potential feeder current in yellow. The timelines in
(b) clearly shows the presence of the seaward flow caused by the rip. On the other hand, Scenario 2 shows our visualizations in the case
there is no rip current. In (c), no arrows are shown, indicating that there is no rip current. In (d), the timeline is relatively straight, indicating
that the flow filed is mostly uniform, hence the absence of a rip current.

ones are the occasional beach goers and weak swimmers [9].
While there are options for in-situ measurements to iden-
tify rip currents, they are generally expensive and require
extensive setup. In this sense, there is currently no robust
location-independent means of rip current identification.

This paper investigates the potential for using flow visu-
alization methods as a means for identifying rip currents
from short video clips. It has the potential for identifying
rip currents based on the behavior of water movement rather
than simply the appearance of the water state. The analysis
pipeline starts with video pre-processing, including image
stabilization and applying optical flow computation to obtain
a time-dependent flow field. We investigate multiple flow
visualizationmethods, including color maps, pathlines, arrow
glyphs, and timelines, to detect and visualize the presence of
rip currents. Examples of two of these methods on scenes
with and without rip currents are shown in Figure 1. After
describing the methods, we evaluate them on various data
sets and compare them against other existing methods as well
as human-annotated data to showcase their performance in
challenging cases.

Contributions of this paper are:
• Our investigation of flow visualization methods for
detecting rip currents found that standard visualiza-
tion methods performed poorly when applied directly.

However, with appropriate modifications driven by
wave behavior, flow visualizationmethods can detect rip
currents in scenarios where existing state-of-the-art rip
detection methods fail.

• We performed comparisons between the proposed flow
based methods against current best practices (classifica-
tion based on Timex images) and other machine learning
based methods. Our flow based methods also improved
human labels that relied on Timex images alone.

II. BACKGROUND AND RELATED WORK
A. RIP CURRENTS
Rip currents are a well-studied ocean phenomenon [9]–[11].
Many factors contribute to the formation of rip currents, such
as bathymetry, wave characteristics, and natural and man-
made structures along the beach. As a result, there are dif-
ferent types of rip currents, including bathymetry-controlled
rips, structural rips, circulating rips, and others [12]. Rips
may either be transient, potentially moving along the beach
and lasting only seconds to minutes, or persistent, holding a
near-constant position for hours or days at a time. Rips that
are frequently found at the same location are usually indica-
tive of a structural feature such as jetties or piers, rocky out-
crops, reefs, or persistent sandbars which lead to variations in
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breakingwave heights alongshore. Regions of larger breaking
waves lead to higher water levels, which then flow alongshore
to regions of smaller breaking waves and lower water levels
and then offshore as a rip current. On sandy beaches, regions
of smaller breaking waves are often characterized by deeper
channels, which are often indications of rip current presence.
Rip currents may pulse, gaining strength when there is a wave
set and weakening in between sets. In terms of appearance,
some rips may be identified by water discoloration as beach
sediment is carried by the rip past the surf zone (region where
waves are breaking). In other cases, rips may be identified
by a darker region of water that is flanked on either side by
breaking waves. Themovement of foam or other debris on the
water surface can also provide clues of rip current locations.
Rip currents are quite varied, dynamic, and pose a challenge
to detect robustly.

B. RIP FORECASTING
Models that incorporate the dominant factors contributing to
rip formation have been proposed to predict future rip current
occurrence e.g. [13], [14]. In fact, NOAA recently announced
an operational rip current forecast for the United States coast-
line [15]. Note that these models differ from efforts in this
paper and other methods described in this section in that the
latter focus on detection rather than forecasting. The forecast
models will benefit from advances in rip detection to validate
and improve rip current predictions.

C. LIFEGUARDS
Lifeguards rely on visual cues and experience to identify
rips, which requires training and familiarity with the locale.
However, most drownings occur on beaches without trained
personnel [16], [17]. Posted signs can provide some informa-
tion regarding what to do if caught in a rip current, but there is
evidence that many people do not find existing signs helpful
in identifying rip currents [18].

D. IN-SITU MEASUREMENTS
In-situ measurements such as acoustic doppler current profil-
ers (ADCP), wave sensors, and acoustic velocimeters provide
water column flow information [19]–[23]. However, these
are expensive and challenging to deploy in the surf zone,
and they only provide data for one location at a time. Flu-
orescein dye is commonly released into the ocean and the
dispersion observed [24]–[27]. Floating drifters with embed-
ded GPS units have also been used to measure currents
[12], [28], [29]. However, these methods require some idea
of where a rip might exist in the first place. They are also
a research endeavor and not designed for use by the general
public. In addition, they are impractical for detecting flash
rips that are more transient in nature.

E. TIME-EXPOSURE IMAGES
Experts at the National Oceanic and Atmospheric Admin-
istration (NOAA) use images and video to gather statistics
about rip currents [30]. These data support the validation

of a rip current forecast model to alert people to poten-
tial hazards [13]. One method that has promise for visu-
ally detecting rip currents is the use of ‘‘time exposure’’
or Timex images [31]–[34]. These are obtained by simply
averaging frames of a video clip, usually over a period of
10minute intervals. This approachworks well for rips that are
characterized by a darker region of water flanked by break-
ing waves since places with consistent breaking waves will
appear blurred white, while the location of a rip will appear
darker. However, its main weakness is that it can only identify
rips with these visual characteristics. Furthermore, because
the time-averagingwindow is overmanywave periods, it may
lead to an incorrect classification e.g. for non-stationary rip
currents. While Timex images are most commonly viewed by
human experts, Maryan et al. [35] trained a machine learning
model to determine whether a Timex image contains a rip
channel or not. They reported a detection rate of 85% for var-
ious beach locations. Nelko also used time-averaged images
and noted that prediction schemes developed at one beach
location might not be directly applicable to another [36].
Nonetheless, the main weakness of any methods which rely
on Timex images is their limitations on the type of rips they
can identify – limited to bathymetry-controlled rips.

F. SEGMENTATION
Another method for detecting rip currents is to find discol-
oration due to sediment transport. Liu and Wu [23] reported
that imagery captured from a stationary webcam can be
segmented based on hue. Possible rips are identified if the
sediment plume extends beyond some distance from the
shoreline. Together with environmental monitoring equip-
ment for wind speed, wind direction, wave height, and wave
period, they have an automated system that issues alerts of
flash rip dangers to beach goers. However, this method is
specific to only certain locales with sediment plumes, and
as with Timex images, limited to rips that exhibit sediment
plumes.

G. NEURAL NETWORKS
De Silva et al. [37] trained a neural networkmodel to identify
rip currents from a sequence of images. They reported a
detection rate of 98.4% for their test set consisting of videos
with and without rip currents. However, their model can only
detect rips with consistent breaking waves since they use
single-frame, RGB-based images of rip currents character-
ized by a gap in breaking waves to train their model. Like the
approaches based on Timex, their implementation is currently
limited to bathymetry-controlled rips until training data are
collected for other types of rips and their model retrained.

H. OPTICAL FLOW
Dense optical flow [38], [39] can be used to detect rip cur-
rents in a video. This method is attractive since optical flow
fields can be directly compared against ground truth flow
fields obtained from in-situ measurements [40]. Philip and
Pang [41] identified rip currents by looking at the distribution
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of detected flow velocities which might include motions due
to wave action, possible rip, and motion in the background
scenery. They assumed the rip current to be in a single
seaward direction, with rip regions above a certain velocity
threshold and region size. Unfortunately, rip currents do not
necessarily flow in a straight line, leading to false-negative
results. Also, rip currents often have feeder currents that
travel alongshore, bringing water that feeds the rip current’s
main body. The work reported in this paper builds upon [41]
to detect nonlinear rip currents and feeder currents, and also
include comparisons with alternative detection methods.

More recently, Anderson et al. [42] introducedWAMFlow
(wave-average movies) where they pre-filter the video source
prior to obtaining the optical flowfield. The pre-filtering aims
to remove the dominant signal due to incident waves while
leaving the signal due to foam or water turbidity features that
might indicate the presence of rip currents and non-stationary
circulation cells. In contrast, the work presented here applies
the filtering on the optical flow field derived from raw
video, while achieving real-time processing for the proposed
pipeline. Furthermore, the focus of this paper is on adapting
flow visualization methods to detect and visualize the pres-
ence of rip currents.

III. DATA AND PRE-PROCESSING
A. DATA SETS
The data set used for our investigation is composed of
27 video clips collected from the web, photographed by
the authors, or obtained from collaborators. The collection
includes cases with rip currents, no rip currents, and possible
weak rip currents. Those that contain rip currents include
different types of rips: rips with curvature, sediment plume,
a dark channel between breaking waves, and structural rips.
The data set also contains cases with swash (water movement
on the shallow part of the beach after a wave has broken all
the way to the high water mark where a wave can run up the
beach) and reflection waves (or backwash off a rocky shore-
line). We exclude some video from consideration because
they are not suitable for flow-based analyses e.g. unsta-
ble/shaky video, contains camera pans/rotations, poor video
quality e.g. blurry, duration is too short for time averaging.
The videos ranged in size from 320 × 400 to 1920 × 1080,
and ranged in length from 11 seconds to 60 seconds, recorded
at 30 fps. In this paper we downsampled large videos to
720-pixels height and the corresponding width to keep their
aspect ratio.

B. DATA REQUIREMENTS
In an ideal scenario, the video is taken from a stabilized
mount, at as high an elevation as possible, with some beach in
the foreground, on a sunny day, with sufficient duration and
resolution. Webcams around the world, especially surf cams
where there is a higher chance of finding rip currents, offer
a rich potential for videos. However, most of them are not
configured for rip current detection.

Flow analysis requires sufficient pixels imaging the rip
current. With the settings of the optical flowmethod we used,
the minimal width of rip current that the estimated flow field
can correctly represent was roughly 80 pixels. For most of the
videos obtained from awebcam that is sufficiently close to the
beach, we found that image resolution of at least 640× 480 is
required. When the relevant section of the ocean uses only a
small part of the frame, increased resolution is needed. The
increased resolution does increase the computational require-
ments. Therefore, videos that are larger than 1080 × 720 are
either scaled down to a height of 720 while maintaining the
aspect ratio, or cropped to the region of interest.

The camera should be steady or fixed and not contain
panning, rotations, zooms since frame to frame correspon-
dence is needed to obtain the optical flow field. Small camera
vibrations or drifts can be compensated by video stabilization,
but excessive shaking will also make the video unsuitable.

Sufficient duration is needed to observe a rip current,
usually at least one minute or at least three wave periods.
The justification is that rip speed is related to breaking wave
height, which in turn varies with infra-gravity wave motion,
commonly called wave ‘‘sets’’. A wave set typically varies
on the order of minutes, and we find that around one minute
of video is sufficient. However, a longer video would be
preferable especially for longer period waves.

C. VIDEO PRE-PROCESSING
Video must be stabilized prior to extracting the optical flow
field. Videos sources from webcams can omit this step, while
videos from drone or hand-held cameras can benefit from this
step. Optical flow estimates motion based on differences of
local neighborhood pixel values in consecutive video frames,
and camera motion will produce a confounding flow field.
Many video stabilization methods exist [43], [44] [45], [46],
and robust automatic stabilization is possible. In this work,
we simply use the Warp Stabilizer feature of Adobe After
Effects. The Warp Stabilizer tracks selected static objects in
the scene (e.g. a pier, rocks) and stabilizes the video using
them as fiducials. We supplement with manual adjustment as
needed, typically when the video contains insufficient rigid
landmarks.

IV. FLOW-BASED ANALYSIS
In this paper, flow-based analysis refers to the analysis and
visualization of a vector field derived from optical flow of
video clips, with the goal of finding rip currents. We inves-
tigate Color Maps and Pathlines as standard baseline flow
visualization methods and find them lacking. We then inves-
tigate the enhanced methods of Filtered Arrow Glyphs and
Timelines and find that they perform well.

A. OPTICAL FLOW MAP
Optical flow map refers to the velocity of pixels in an image
derived from motion of neighboring pixels in consecutive
frames from a video. Several optical flow algorithms and
surveys exist [47], [48] [49], [50], and produce a flow field
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FIGURE 2. The color wheel used to map flow vector to color. The flow
directions are mapped to hues, while the relative magnitudes are
mapped to value (darker indicating smaller magnitudes). For example,
red indicates a flow towards the right.

describing where each pixel moves from one frame to the
next. Our implementation uses the OpenCV library [51] for
computation. Dense optical flow is calculated at every pixel
using Farneback’s method [47], and used for visualizations
methods that require it, such as pseudo-coloring and flow
difference. To save computational cost, sparse optical flow
is calculated using Lucas-Kanade [48], and used as input to
the remainder of the visualization methods.

B. BASELINE VISUALIZATION METHODS
1) COLOR MAP
The most basic method of visualizing a scalar field is
pseudo-coloring or colormapping. In the case of a vector field
such as the vector field obtained from the optical flow across
frames in a video, direction and magnitudes are mapped
separately to different color properties. Specifically, we use
an HSV color model where flow direction is mapped to hue
(what is normally referred to as color), while flow magnitude
is mapped to value (brighter or darker shade of the color).
Saturation is set to one. Figure 2 shows the color wheel that
we use to map the flow direction andmagnitude to hue (color)
and value (darker towards the center of the color wheel)
respectively. For example, brighter red indicates a strong flow
towards the right, while a darker red indicates a weaker flow
towards the right.

Color mapping vector fields involve first converting vector
information from Cartesian to polar coordinates to obtain
angles and magnitudes from the 2D vector components. The
magnitudes are normalized so that they range from 0.1.
Angles are then mapped to hue while normalized magni-
tudes are mapped linearly to value. In Figure 3, the green

FIGURE 3. The original frame with a rip current is shown in (a), and the
corresponding single frame color map is shown in (b). Notice that the rip
current traced using the green dye in (a) corresponds to the dark spot in
the center of the color map in (b). Usually, rip currents are much slower
than incoming waves, and its relatively weak signals are not easily
observed in a single frame color map. This baseline visualization method
is difficult to interpret and thus not directly usable.

fluorescent dye on the left image indicates the location of the
rip current. On the right, is the corresponding color mapped
image. The bright green regions on the right indicate a strong
flow direction towards the bottom left of the image. The
darker regions of the right image correspond to regions with
weak to no movement. Notice that these regions correspond
to the beach and areas past the surf zone, as well as the rip
itself. Since the video has been stabilized, the darker color
where the rip is located indicates that the speed of the rip
away from shore is relatively slow compared to the speed of
breaking waves as they progress toward the coastline. While
this visualization allowed us to see velocity information, it
was confusing to general viewers and is not usable by itself
for alerting viewers to the presence of rip currents.

2) PATHLINES
Pathlines record the trajectory of a massless particle in a
time-varying vector field [52]. The optical flow field derived
from video analysis is a time-varying vector field Ev(Ep, t)
where the velocity Ev is known for each location Ep at time t .
The pathline is obtained by integrating dEp

dt = Ev(Ep, t) We use
an explicit fixed step 4th order Runge-Kutta integration. If a
seed point is placed in the vicinity of a rip current, we expect
it to be drawn into the rip, and leave a trace of its path from
the seed point towards the rip in the process. On the other
hand, those seeded outside a rip zone would not be affected
and would likely just be washed ashore by the incoming surf.
Aside from the trajectory itself, a pathline can be colored to
show some other properties such as: (a) age of the particle,
which is useful to see if the trajectory is progressing seaward
or not; (b) length of trajectory, which is useful to gauge
relative speeds; and (c) distance from starting point, which
is useful to see if a particle takes a circuitous/cyclic path or a
more direct route.

To test this method, we seeded a regularly spaced
9 × 9 sampling grid. Figure 4 shows the 81 pathlines. Path-
lines are colored by age, starting with red and getting cooler
over time. Unlike Figure 3, this figure shows the cumulative
effects of the flow field on the 81 seed particles, rather than an
instantaneous snapshot of where the 81 particles are located.
Here, we see that the trajectories are erratic (even after video
stabilization). Nevertheless, one can see that pathlines are

FIGURE 4. A visualization of the flow field obtained by optical flow is
shown using the baseline method of pathlines. While they somewhat
capture the signal of rip currents, the visualizations are not very clear.
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indeed headed out in the rip, and even further beyond the outer
boundary of the green tracer dye. For this method to be a rip
detector, one would have to filter out the pathlines that are
not in the rip. However, we cannot simply remove pathlines
that are seaward, assuming one knows which direction is
seaward in any given video source, because of the erratic
trajectories but more importantly rips may have a circulating
pattern. Because of these reasons, coupled with the clutter
evident even with just a few pathines, we do not investigate
this further as a detection method.

C. MODIFIED VISUALIZATION METHODS
Straightforward application of visualization methods such as
the two mentioned in the previous section cannot detect rip
currents. Here, we describe how domain knowledge coupled
with modifications to visualization methods are necessary to
arrive at effective detection and visualization of rips.

1) FILTERED ARROW GLYPHS
This is an extension of an arrow plot where an arrow is present
only when a potential rip current is detected. Feeder currents
that can bring material into the main rip are also included.
An example of this method is shown in Figure 1 (a). Because
glyphs can quickly clutter the display, we need to balance
the amount of information versus the amount of clutter. Here,
each frame is represented by a grid of velocities with 20-pixel
spacing to ensure sufficient representation of the flow field.
The idea is to alert the user to areas that might potentially be
dangerous while leaving the rest of the imagery untouched.

The optical flow map detects movements across frames.
Movements of clouds as well as people or pets walking on
the beach are also detected. Such movements are irrelevant
to rip detection so we apply a mask to ignore sky and beach
regions while passing the ocean region for further process-
ing. Because of the nature of wave motion where the pre-
dominantly observed motion is that of the incoming waves,
we found that there was insufficient signal to detect rips when
analyzing the flow field on individual frames. To remedy,
we construct a time-averaged vector field over three wave
periods. In conditions where the sea state can induce rip
currents this ranges from 15-45 seconds and covers short
period wind chops to longer period swells. The motivation
for time-averaging is that while water may get pushed in with
each wave, they also recede back to the ocean. However, the
region where a rip current is situated often times have less
breakingwaves and hence the outward flow from a rip is more
persistent and easier to detect from the time-averaged flow
field.

Figure 5 shows the time-averaged flow fields for the dura-
tion of 1 and 3 wave periods. The scene contains a rip current
that flows from the left and to the upper right. The corre-
sponding color maps, described earlier, of the time-averaged
flow field highlights this rip current in purple, indicating its
direction. In this figure, the primary focus is to highlight flow
direction and not on flow magnitude. Hence, we temporarily
set all the magnitudes to 1. Notice that the color map of the

FIGURE 5. Comparison of the averaged flow field color map for the
duration of 1 and 3 wave periods. Original frame is shown in (a). Images
in (b) and (c) are the color map of the obtained flow field, where
direction is mapped to hue. In (b) and (c), the purple regions on the left
correspond to rip current, indicating that there is a seaward directional
flow there. Notice that the false positive in the right bottom corner
disappears after averaging for 3 wave period.

one wave period averaging has another purple region in the
right bottom corner of the surf zone. These false positives
can be caused by transient receding water in swash zones.
However, with the three wave period averaging, the false
positive disappears.

Simply displaying all directional arrows produces a clut-
tered and confusing image. It is necessary to filter the data so
that only the relevant information is shown i.e. the regions of
a rip current. To achieve this, once the time-averaged vector
field is constructed at each arrow position, all arrows are
grouped into six bins, each representing a range of 60 degrees.
The bin with the highest frequency represents the predom-
inant flow direction, which we assume to be that of the
incoming waves. The opposite direction is then assumed to
be the rip direction. Vectors in this bin are represented by
red arrows, while vectors in the neighboring bins on either
side are represented by yellow arrows. The yellow arrows
can potentially show feeder currents. They are also useful
when the rip current direction extends beyond the bin that
represents the rip direction e.g. for rips with high curvatures.
In short, filtered arrow glyphs involve both masking out
regions of a frame that is not part of the body of water, and
only displaying arrow glyphs of time averaged vectors that
are in the rip and feeder directions.

While this assumption of reverse flow in a rip current
is simplistic, cases where the rip is quite obvious can be
highlighted using this technique as in Figure 1 (a). Notice that
the region with rip current is obviously marked, in contrast to
Figure 1 (c) showing an ocean scene with no rip current, and
no annotation.

A caveat of this method is that the direction of some rips
are not necessarily opposite the incoming wave direction e.g.
when waves arrive at an oblique angle to the shoreline, the
rip may be as little as 90 degrees from the predominant wave
direction. To be able to visualize such cases and any potential
feeder current, we experimentally chose 6 bins. With 8 bins,
feeder currents tend to be ignoredmore often, and with 4 bins,
it produces much more false positives.

The filtered color map, such as the ones shown in
Figure 6(b) and (e), is generated in a similar fashion as the
filtered arrow glyph. Rip direction and feeder current direc-
tions are first determined using the grid of velocities with
20-pixel spacing and the binning strategy. The optical flow for
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all pixels is computed, time-averaged, and mapped to color
as described in section IV-B1. Parts of the color map image
is then masked out if they are not in the rip or feeder current
directions. Finally, this image is blended with the correspond-
ing frame of the video. Note that regions with lower flow
magnitude (low value) will contribute correspondingly less
color to the blended image.

2) TIMELINES
Timelines is another flow visualization technique for analyz-
ing time-varying flow fields. An example of this method is
shown in Figure 1 (b) In the context of rip current detection,
it represents a chain of virtual buoys tethered together by a
massless and stretchable rope. When placed in the surf zone
close to and along the shoreline, we would expect virtual
buoys in the rip to be pulled out to sea, and those nearby will
be pulled by feeder currents towards the main rip and even-
tually out to sea. The rest of the virtual buoys will likely be
washed ashore. We introduce a new timeline in the surf zone
every 30 seconds in order to track any new currents that may
lead to the identification of pulsing rip currents. Virtual buoys
along the timeline are initially spaced out at regular inter-
vals. Over time, the relative spacing between adjacent buoys
provide additional information if there is a large velocity
gradient. Figure 1 (b) illustrates a case where a rip is detected.
The timeline is clearly deformed and extends out along the
rip channel. Contrast this with Figure 1 (d) for which no
rip current is present and therefore the timeline is relatively
undeformed. A grey line indicates the initial placement of the
timeline in both cases. When waves are pronounced and the
incident angle of the waves is perpendicular to the shoreline,
the optimal placement of the timeline is parallel to the beach
and in the middle of the surf zone because the rip current
direction will likely have a direct seaward heading. However,
when waves are weak or the incident angle of the waves is
oblique to the shoreline, the rip current direction may not be
directly seaward but also at an oblique angle. In such cases,
we place an additional timeline perpendicular to the shoreline
to better see rips that may form at an angle from the shoreline.

The process of calculating and generating the timeline is
similar to that of pathline tracing. Each virtual buoy on a
timeline is treated as a seed point of a pathline and its tra-
jectory is calculated using RK4 integration. However, rather
than tracing the evolution of each seed point independently,
a timeline is drawn by connecting the points from all the
virtual buoys, in the same order, to form a curve. As time
progresses, the timeline is thus animated.

How fast a timeline moves depend on the local flow veloc-
ity. A fast moving wave could potentially push a timeline
all the way to the shoreline. Such large displacements are
not conducive to detecting rip currents. Simply reducing
the integration step size will just increase computation cost
without addressing the underlying problem. Just as we saw in
Figure 5, averaging the flow field for at least three wave peri-
ods is crucial. Therefore, the timelines need to move slower
than the actual speed of the waves to allow extraction of rip

currents. For this reason, we multiply the optical flow field in
each frame by an adjustment factor α. The α is calculated as
α = d/(δ · f ). d is the pixel-wise distance between the initial
placement of the timeline and the shoreline, δ is the pixel-wise
velocity of the incoming waves, and f is the total number
of frames. For the videos that are longer than three minutes,
we cap f to the number of frames that corresponds to three
minutes in order to correctly capture transient rips. With the
adjustment factor α, the timeline reaches the shoreline at the
end of the specified number of frames. These slower moving
timelines provide stable results.

V. RESULTS
In this section, we first evaluate the two modified flow visu-
alization/detection methods, and then compare their perfor-
mance against other methods from literature.

A. EVALUATION OF PROPOSED METHODS
We tested the two modified methods on different data set
including visually obvious cases containing strong rip cur-
rents, a rip with sediment plume, and less visually apparent
cases with weaker rip currents. We then applied the both
methods on human labelled data set to confirm or challenge
previously annotated results by rip current experts.

1) STRONG RIP CURRENTS
Figure 6 shows two examples of strong rip currents of the type
that prior methods can also detect. The filtered arrow glyph
visualizations in (a) and (d) are consistent in showing regions
of flow against the predominant incoming wave direction.
The arrows in the neighboring bins are also displayed in
yellow, showing how water may feed in and out of the rip.

As noted in section IV-B, applying color maps on the flow
field on a per frame basis does not help in detecting rips.
We modified that method in a similar fashion as the filtered
arrow glyphs, by time-averaging prior to color mapping, then
filtering out non-interesting regions. This modification is
illustrated in Figure 6(b) and (e). Rip currents can also be seen
in one quick glance. It does require one to look at the color
wheel to confirm the flow direction, whereas this step is not
necessary with the filtered arrow glyph. Hence, we omit this
method from further consideration.

The timeline visualizations in (c) and (f) also succeeded at
showing the rip based on their protrusion or deformation. The
astute reader may notice that the timeline protrusion in (f),
as well as the position of the arrow glyphs and colored regions
in (d) and (e) are on the right region of the darker channel in
the surf zone, this indicates the region within the rip zone with
strongest velocities.

2) SEDIMENT PLUMES
Figure 7 shows an example of a rip where the predominant
visual signature is an obvious sediment plume. The filtered
arrow glyph and the filtered color map clearly show the
seaward flow caused by the strong rip. Furthermore, feeder
currents from both sides of the rip are highlighted when
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FIGURE 6. These evaluation videos show a prominent rip which can be easily seen on the left side of the frame in Scene 1 and on the center of the frame
in Scene 2. In both scenes, all visualization methods clearly show where rip current is located. In (a), the arrows covers the body of the rip. In (b), the rip
is highlighted in pink, indicating its direction. There is another region to the right where the flow direction is close to that of the rip direction and is
highlighted in yellow. However, we can safely rule this out as it’s not connected to the main rip and is mainly alongshore. The rip is also highlighted by the
single timeline in (c). The gray line indicates the initial position of the timeline. In (d) and (e), the rip current is highlighted in the center of the frame. The
region on the right side of the frame with lower right directional flow indicates this rip may circles back to the shore. (f) shows that the rip is highlighted
by the single timeline.

FIGURE 7. This example showcases a rip with no breaking waves but
which has a sediment plume. The existing machine learning methods fail
in this type of data sets where there is no breaking wave features that
they used for training their models. However, the optical flow methods
perform well on this data set. The filtered arrow glyphs show there is a
strong and obvious rip in the center. The feeder current on the both sides
of the rip is also highlighted, providing additional information of the rip.
The deformation of the timeline coincides well with the rip channel.

this method is applied. Swimmers in a feeder current may
eventually end up in a rip and swept away. Therefore, it is
crucial to visualize these regions as well.

3) WEAK RIP CURRENTS
Figure 8 shows a harder case. Even though the visual sig-
nature indicates an obvious rip where one sees the darker
channel between breaking waves, the velocities are quite low.

FIGURE 8. This example showcases the performance of the timeline
method when the flow in the rip is weak. Due to the lack of wave textures
in the rip region as well as the quality of the video, the optical flow
method detected very low velocity in the leftward flowing rip. We can only
see a few arrow glyphs since most of them were filtered out. However,
in (b), the ability of timelines to capture cumulative movement effects
shows a deformation. While most of the timeline has washed in past the
gray line, the deformation of the timeline in the darker region indicates a
rip, albeit pretty weak and not exceeding much past the original gray line.

Hence, Figure 8(a) and Figure 8(b) do not provide much
indication of a rip current. The slight differences in veloci-
ties at the rip channel and the other incoming wave regions
are however enough to deform the timeline, indicating the
presence of the rip at the center of the frame. The timeline
method is more sensitive because it can accumulate the small
deformations from weak velocities.

Figure 9 showcases another difficult case with no obvious
surf zone and just shore break. In this scenario, the placement
of an additional timeline perpendicular to the shoreline is
helpful in visualizing the signal of a rip current that was
present. Here, the deformation of the blue timeline indicates
a stronger longshore component compared to the green time-
line showing seaward component.
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FIGURE 9. This example shows a rip that is not detectable using filtered
arrow glyphs nor filtered color maps (and therefore omitted). We do see
an seaward movement of the green timeline that is placed parallel to
shore, but do not see any deformation to indicate a particular region that
may be moving out faster than the rest. Placing another timeline, colored
blue, perpendicular to shore, we can see a more pronounced deformation
indicating a strong longshore current.

B. COMPARISON WITH HUMAN LABELLED DATA SET
Rip current researchers at NOAAhave approximately a year’s
worth of labelled Timex images (from 10 minute video seg-
ments) collected from the 40th Street Miami Beach webcam.
This particular webcam is part of a larger network of web-
cams (SECOORA) for coastal monitoring which includes
beach erosion and rip current forecasting [53].

Each Timex image represents a 10 minute video seg-
ment, and were labelled by human experts as definite
yes, maybe yes, maybe no, and definite no with
regards to the presence of rip currents. Figure 10 shows
typical views from this webcam. We note a few positive

and negative aspects about this particular data set. There is
minimal camera movement since the camera is on a fixed
mount. Camera placement is pretty high but has a wide view.
While the wide field of view is good for monitoring coastal
erosion, it is less than ideal for monitoring rip currents.
About 70% of the frame contains non-interesting parts i.e.
sky, vegetation, sandy beach. Furthermore, due to the severe
perspective distortion, only the portion of the water closest to
the camera have sufficient spatial resolution (distance/pixel)
to obtain a meaningful optical flow field. The camera aside,
the Miami beach itself is a long sandy beach with a shallow
gradual sloping bottom which does not lead to large breaking
waves and is geographically protected from large swells by
the Bahamas. Hence, the rip currents that do form here are
typically weak.

We applied the two modified techniques (filtered arrow
glyphs and timelines) on the 10 minute video clips for a
random sample of labelled Timex data set. We quickly dis-
missed the utility of the filtered arrow glyphs and filtered
color maps for this data set because of the distant camera
set up which made the velocities very low. Coupled with the
relatively slow wave propagation, this meant little changes
in neighboring pixel values and therefore decreased signal
to noise. However, because the displacement of timelines
captures the cumulative effects of the flow field, even those
from weaker rips, we were able to confirm the human labels
on most of the cases that we looked at. We did find instances,
such as those shown in Figure 10, where the timelines suggest
a different label than the human labels. We presented these

FIGURE 10. A comparison of timeline visualization with Timex images commonly used for human labelling. The top row shows timelines. A new
timeline was released in the surf zone every 10 seconds and tracked for the next 20 seconds. In general, timelines were pushed onto the shore by
incoming waves except for regions of potential rips. The bottom row shows Timex. In example (a), the Timex was originally labelled as Maybe yes
to contain rip currents but after consulting our visualization and the complete video, the label was changed to Maybe no. Note that this frame of
the video did show some changes in spacing of the points along the first timeline. It indicated velocity changes running parallel to the beach or a
longshore current. This behavior would not have been detected using the Timex image since it was inside the region of breaking waves and not
visually apparent. In example (b), the label was changed from Definite yes to Maybe yes. There were slight bumps noticeable on both timelines
but not considered significant. These slight bumps indicated possibly some weak rip currents. In example (c), the label was revised dramatically
from Definite no to Definite yes. The second timeline showed a fairly significant bump showing where the rip was located. Examples
(a) and (b) both had the Timex characteristic darker region in between lighter regions of breaking waves. In (c) the Timex darker region was not
present due to stronger surf conditions during that period, which was why the initial human label relying only on the Timex gave incorrect labels.
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FIGURE 11. Two examples where rip detection using timex images failed
even when the visual signature of the rips are very strong.

to the experts who originally labelled the data set and asked
them to view the video associated with the Timex images to
make a more careful determination. In these instances, the
experts changed their labels after reviewing the video. Note
that the label of maybe yes seem to be used for cases where
the rip is considered weak or the rip signal is not conclusive.

While rip detection using Timex images is less time con-
suming thanwatching video clips, and the signature pattern of
rip currents in Timex images are easier to discern than looking
at raw video by humans, solely relying on them can lead to
incorrect classifications. Our small study demonstrates the
utility of timelines for more accurate labelling compared to
Timex images alone. The human experts indicated that the
visualizations were valuable and contained cues which did
not exist in Timex visualizations. For study locations with
fixed camera mounts, accompanying Timex images with our
visualization output can help improve labelling accuracy.
This is an important process in collecting good training data
for building automated classification models using machine
learning methods such as those reported in [35], [37].

C. COMPARISON ACROSS METHODS
We compared how the different published methods detected
rip currents in the video clips shown in Figures 1, 6, 7, 8, 9,
and 10. The following video clips contain rip currents: Fig-
ures 1(row 1), 6, 7, 8, 9, 10(column b), and 10(column c). The
following video clips do not contain rips: Figures 1(row 2)
and 10(column a). Table 1 summarizes the results. A yes entry
means the method correctly detected the rip if present (true
positive), or correctly marked the video as not containing a
rip (true negative). A no entry means the method gave a false
positive or false negative result.

1) COMPARISON WITH MACHINE LEARNING METHODS
Currently, there are two rip detection methods that utilize
machine learning methods. Maryan et al. [35] employ a
Viola-Jones framework [54] to train their model to detect
rips from Timex images (see Timex column in Table 1), while
de Silva et al. [37] used a modified deep learning technique
Faster RCNN [55] with an accumulation buffer to aggregate
frames across time to improve prediction. That model was
trained to detect rips from images and video clips (see the
Faster RCNN column in Table 1). Rip detection that relies on
Timex images are inherently limited to bathymetry controlled

rips where the visual signature is a darker channel in between
breaking waves. The model described in [37] is also limited
to bathymetry controlled rips. However, that limitation is not
inherent to the deep learning technique they used but rather
the training data they used to train their model. Given these
considerations, we would expect both detectors to do well in
detecting bathymetry controlled rips and not well with other
types of rips.

The Timex and Faster RCNN columns in Table 1 show
how the machine learning methods fare in classifying and
detecting rip currents. Our expectation is that Timex should
perform well on all but Figures 7 (sediment plume) and 9

TABLE 1. Comparison of filtered color maps, filtered arrow glyphs, and
timeline methods against other published methods that analyze images
and/or videos. A yes indicates a (mostly) correct detection. The last row
indicates the ratio of # correct to total. Notice that none of the existing
methods is able to provide correct detections in all of the videos.
In contrast timelines provides correct detections in all eight videos.
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(no visual signature). Looking at the actual tests, we see
that Timex performed poorly. Figure 11 shows two rips with
strong visual signatures where the method based on Timex
images failed. When we reran the data but fed individual
frames to the model that learned to classify Timex images, the
results improved slightly. There were 69% of the frames from
Figure 6(1) that were correctly labelled. Hence, we marked
Figure 6(1) as a yes in the Timex column.

2) COMPARISON WITH PREVIOUS FLOW BASED METHOD
The flow-based method described in [41] also analyzed the
optical flow field derived from the video. However, it did not
account for wave pulsing and used simple statistics to guess
the seaward rip direction. While this may work in the typical
bathymetry controlled rips, the assumption that rip direction
is always straight also makes this method less flexible. Fur-
thermore, the visualization of the detected rip is a simple
reddish region to warn presence of rip and does not impart
any velocity information. Figure 12 shows the output of this
method on the data set shown in Figure 6(2). The highlighted
regions corresponds well with the red arrows in Figure 6(d)
and the pink regions in Figure 6(e). Somewhat surprising,
it failed on both Figure 6(1) and Figure 8. Upon reviewing
those two videos, the speed of the rip is very slow. So, even
while there are strong visual cues in both cases, the per frame
velocities at the rip regions were low and appeared spurious
and therefore did not pass the threshold set by the method.
This method also failed in Figures 9 and 10. As mentioned
earlier, the velocities in Figure 9 are also very low and per
frame velocity analyses fail. In Figure 10, because the camera
is so far away, each pixel covers a much larger area and
therefore less sensitive to velocity changes.

FIGURE 12. The same frame as Figure 6(2) but using the method
from [41].

3) COMPARISON WITH IMAGE PROCESSING METHOD
The image processing method for rip detection described
in [23] detects transient rips in video feeds from a fixed web-
cam. Rips at this location are characterized by discoloration
in the water that extends some distance from shore. Based
on the camera orientation, the authors rectified the frames
and set a threshold line some distance from shore where any
discoloration beyond that line is considered a rip. Given that
this method is designed to detect rips with sediment plumes,

we expect that it should dowell with Figure 7, assuming that a
threshold line has been set up as well. Indeed, this is what we
observe with this approach in Table 1. However, this method
is specialize to detect only this type of rip and does not detect
other types of rips.

We provide Table 1 summarizing the performance of our
methods and published methods on the 8 rip current videos
shown in this paper. We find that the published methods are
each limited to a specific class of rip currents and none of
the existing methods are able to correctly label all videos.
In contrast, all of the flow based visualization methods work
at least as well as the best alternate method, and Timelines
in particular is able to correctly identify the presence of rip
currents in all 8 of the videos.

VI. IMPLEMENTATION NOTES
We implemented the methods above with C++ along with
OpenCV library. We used Alienware m3 R15 with RTX 2070
Super for computation, and it consumes roughly 1GB of
memory. We used GPU acceleration mainly for optical flow
computation, and with a dedicated GPU, our method ran in
real-time with 30 FPS on 1080 × 720 resolution.

VII. SUMMARY AND CONCLUSION
We investigated rip current detection using optical flow anal-
ysis on video clips. This is complicated because rip cur-
rents are amorphous without well defined boundaries and
ephemeral without well defined temporal bounds. The prob-
lem is further complicated by the presence of a dominant
quasi-periodic signal from wave motion. We found that the
straight-forward application of flow visualization methods
did not yield good results. The main contributions of this
paper are the modifications to standard flow visualization
methods in order to equip them with rip current detection
capability without which the detection is difficult or impos-
sible. The modifications significantly improved upon earlier
flow based method both in terms of ability to detect subtle
rips and clarity in visualization. Our study also shows that our
proposed flow based visualization results in improved human
judgements versus the existing dominant method of viewing
Timex images.

Flow-based approach is a valuable tool to have in our
arsenal of rip detection methods. It is best suited for situations
where a stable platform for a camera is available e.g. surf
cams. In such settings, site specific customizations e.g. place-
ment of timelines can be employed tomake the approach fully
automated. The work presented here has shown sufficient
success that it will be deployed on the SECOORA network
of webcams.

APPENDIX
Our code is available in the following GitHub repository.
https://github.com/IsseiMori/Flow-based-Rip-Current-
Detection
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